跳转至

计数排序

「计数排序 counting sort」通过统计元素数量来实现排序,通常应用于整数数组。

简单实现

先来看一个简单的例子。给定一个长度为 \(n\) 的数组 nums ,其中的元素都是“非负整数”,计数排序的整体流程如下图所示。

  1. 遍历数组,找出数组中的最大数字,记为 \(m\) ,然后创建一个长度为 \(m + 1\) 的辅助数组 counter
  2. 借助 counter 统计 nums 中各数字的出现次数,其中 counter[num] 对应数字 num 的出现次数。统计方法很简单,只需遍历 nums(设当前数字为 num),每轮将 counter[num] 增加 \(1\) 即可。
  3. 由于 counter 的各个索引天然有序,因此相当于所有数字已经被排序好了。接下来,我们遍历 counter ,根据各数字的出现次数,将它们按从小到大的顺序填入 nums 即可。

计数排序流程

counting_sort.py
[class]{}-[func]{counting_sort_naive}
counting_sort.cpp
[class]{}-[func]{countingSortNaive}
counting_sort.java
[class]{counting_sort}-[func]{countingSortNaive}
counting_sort.cs
[class]{counting_sort}-[func]{countingSortNaive}
counting_sort.go
[class]{}-[func]{countingSortNaive}
counting_sort.swift
[class]{}-[func]{countingSortNaive}
counting_sort.js
[class]{}-[func]{countingSortNaive}
counting_sort.ts
[class]{}-[func]{countingSortNaive}
counting_sort.dart
[class]{}-[func]{countingSortNaive}
counting_sort.rs
[class]{}-[func]{counting_sort_naive}
counting_sort.c
[class]{}-[func]{countingSortNaive}
counting_sort.zig
[class]{}-[func]{countingSortNaive}

计数排序与桶排序的联系

从桶排序的角度看,我们可以将计数排序中的计数数组 counter 的每个索引视为一个桶,将统计数量的过程看作是将各个元素分配到对应的桶中。本质上,计数排序是桶排序在整型数据下的一个特例。

完整实现

细心的同学可能发现,如果输入数据是对象,上述步骤 3. 就失效了。假设输入数据是商品对象,我们想要按照商品价格(类的成员变量)对商品进行排序,而上述算法只能给出价格的排序结果。

那么如何才能得到原数据的排序结果呢?我们首先计算 counter 的“前缀和”。顾名思义,索引 i 处的前缀和 prefix[i] 等于数组前 i 个元素之和:

\[ \text{prefix}[i] = \sum_{j=0}^i \text{counter[j]} \]

前缀和具有明确的意义,prefix[num] - 1 代表元素 num 在结果数组 res 中最后一次出现的索引。这个信息非常关键,因为它告诉我们各个元素应该出现在结果数组的哪个位置。接下来,我们倒序遍历原数组 nums 的每个元素 num ,在每轮迭代中执行以下两步。

  1. num 填入数组 res 的索引 prefix[num] - 1 处。
  2. 令前缀和 prefix[num] 减小 \(1\) ,从而得到下次放置 num 的索引。

遍历完成后,数组 res 中就是排序好的结果,最后使用 res 覆盖原数组 nums 即可。下图展示了完整的计数排序流程。

计数排序步骤

counting_sort_step2

counting_sort_step3

counting_sort_step4

counting_sort_step5

counting_sort_step6

counting_sort_step7

counting_sort_step8

计数排序的实现代码如下所示。

counting_sort.py
[class]{}-[func]{counting_sort}
counting_sort.cpp
[class]{}-[func]{countingSort}
counting_sort.java
[class]{counting_sort}-[func]{countingSort}
counting_sort.cs
[class]{counting_sort}-[func]{countingSort}
counting_sort.go
[class]{}-[func]{countingSort}
counting_sort.swift
[class]{}-[func]{countingSort}
counting_sort.js
[class]{}-[func]{countingSort}
counting_sort.ts
[class]{}-[func]{countingSort}
counting_sort.dart
[class]{}-[func]{countingSort}
counting_sort.rs
[class]{}-[func]{counting_sort}
counting_sort.c
[class]{}-[func]{countingSort}
counting_sort.zig
[class]{}-[func]{countingSort}

算法特性

  • 时间复杂度 \(O(n + m)\) :涉及遍历 nums 和遍历 counter ,都使用线性时间。一般情况下 \(n \gg m\) ,时间复杂度趋于 \(O(n)\)
  • 空间复杂度 \(O(n + m)\)、非原地排序:借助了长度分别为 \(n\)\(m\) 的数组 rescounter
  • 稳定排序:由于向 res 中填充元素的顺序是“从右向左”的,因此倒序遍历 nums 可以避免改变相等元素之间的相对位置,从而实现稳定排序。实际上,正序遍历 nums 也可以得到正确的排序结果,但结果是非稳定的。

局限性

看到这里,你也许会觉得计数排序非常巧妙,仅通过统计数量就可以实现高效的排序工作。然而,使用计数排序的前置条件相对较为严格。

计数排序只适用于非负整数。若想要将其用于其他类型的数据,需要确保这些数据可以被转换为非负整数,并且在转换过程中不能改变各个元素之间的相对大小关系。例如,对于包含负数的整数数组,可以先给所有数字加上一个常数,将全部数字转化为正数,排序完成后再转换回去即可。

计数排序适用于数据量大但数据范围较小的情况。比如,在上述示例中 \(m\) 不能太大,否则会占用过多空间。而当 \(n \ll m\) 时,计数排序使用 \(O(m)\) 时间,可能比 \(O(n \log n)\) 的排序算法还要慢。