跳转至

「堆 heap」是一种满足特定条件的完全二叉树,主要可分为下图所示的两种类型。

  • 「大顶堆 max heap」:任意节点的值 \(\geq\) 其子节点的值。
  • 「小顶堆 min heap」:任意节点的值 \(\leq\) 其子节点的值。

小顶堆与大顶堆

堆作为完全二叉树的一个特例,具有以下特性。

  • 最底层节点靠左填充,其他层的节点都被填满。
  • 我们将二叉树的根节点称为“堆顶”,将底层最靠右的节点称为“堆底”。
  • 对于大顶堆(小顶堆),堆顶元素(即根节点)的值分别是最大(最小)的。

堆常用操作

需要指出的是,许多编程语言提供的是「优先队列 priority queue」,这是一种抽象数据结构,定义为具有优先级排序的队列。

实际上,堆通常用作实现优先队列,大顶堆相当于元素按从大到小顺序出队的优先队列。从使用角度来看,我们可以将“优先队列”和“堆”看作等价的数据结构。因此,本书对两者不做特别区分,统一使用“堆“来命名。

堆的常用操作见下表,方法名需要根据编程语言来确定。

  堆的操作效率

方法名 描述 时间复杂度
push() 元素入堆 \(O(\log n)\)
pop() 堆顶元素出堆 \(O(\log n)\)
peek() 访问堆顶元素(大 / 小顶堆分别为最大 / 小值) \(O(1)\)
size() 获取堆的元素数量 \(O(1)\)
isEmpty() 判断堆是否为空 \(O(1)\)

在实际应用中,我们可以直接使用编程语言提供的堆类(或优先队列类)。

Tip

类似于排序算法中的“从小到大排列”和“从大到小排列”,我们可以通过修改 Comparator 来实现“小顶堆”与“大顶堆”之间的转换。

heap.py
# 初始化小顶堆
min_heap, flag = [], 1
# 初始化大顶堆
max_heap, flag = [], -1

# Python 的 heapq 模块默认实现小顶堆
# 考虑将“元素取负”后再入堆,这样就可以将大小关系颠倒,从而实现大顶堆
# 在本示例中,flag = 1 时对应小顶堆,flag = -1 时对应大顶堆

# 元素入堆
heapq.heappush(max_heap, flag * 1)
heapq.heappush(max_heap, flag * 3)
heapq.heappush(max_heap, flag * 2)
heapq.heappush(max_heap, flag * 5)
heapq.heappush(max_heap, flag * 4)

# 获取堆顶元素
peek: int = flag * max_heap[0] # 5

# 堆顶元素出堆
# 出堆元素会形成一个从大到小的序列
val = flag * heapq.heappop(max_heap) # 5
val = flag * heapq.heappop(max_heap) # 4
val = flag * heapq.heappop(max_heap) # 3
val = flag * heapq.heappop(max_heap) # 2
val = flag * heapq.heappop(max_heap) # 1

# 获取堆大小
size: int = len(max_heap)

# 判断堆是否为空
is_empty: bool = not max_heap

# 输入列表并建堆
min_heap: list[int] = [1, 3, 2, 5, 4]
heapq.heapify(min_heap)
heap.cpp
/* 初始化堆 */
// 初始化小顶堆
priority_queue<int, vector<int>, greater<int>> minHeap;
// 初始化大顶堆
priority_queue<int, vector<int>, less<int>> maxHeap;

/* 元素入堆 */
maxHeap.push(1);
maxHeap.push(3);
maxHeap.push(2);
maxHeap.push(5);
maxHeap.push(4);

/* 获取堆顶元素 */
int peek = maxHeap.top(); // 5

/* 堆顶元素出堆 */
// 出堆元素会形成一个从大到小的序列
maxHeap.pop(); // 5
maxHeap.pop(); // 4
maxHeap.pop(); // 3
maxHeap.pop(); // 2
maxHeap.pop(); // 1

/* 获取堆大小 */
int size = maxHeap.size();

/* 判断堆是否为空 */
bool isEmpty = maxHeap.empty();

/* 输入列表并建堆 */
vector<int> input{1, 3, 2, 5, 4};
priority_queue<int, vector<int>, greater<int>> minHeap(input.begin(), input.end());
heap.java
/* 初始化堆 */
// 初始化小顶堆
Queue<Integer> minHeap = new PriorityQueue<>();
// 初始化大顶堆(使用 lambda 表达式修改 Comparator 即可)
Queue<Integer> maxHeap = new PriorityQueue<>((a, b) -> b - a);

/* 元素入堆 */
maxHeap.offer(1);
maxHeap.offer(3);
maxHeap.offer(2);
maxHeap.offer(5);
maxHeap.offer(4);

/* 获取堆顶元素 */
int peek = maxHeap.peek(); // 5

/* 堆顶元素出堆 */
// 出堆元素会形成一个从大到小的序列
peek = maxHeap.poll(); // 5
peek = maxHeap.poll(); // 4
peek = maxHeap.poll(); // 3
peek = maxHeap.poll(); // 2
peek = maxHeap.poll(); // 1

/* 获取堆大小 */
int size = maxHeap.size();

/* 判断堆是否为空 */
boolean isEmpty = maxHeap.isEmpty();

/* 输入列表并建堆 */
minHeap = new PriorityQueue<>(Arrays.asList(1, 3, 2, 5, 4));
heap.cs
/* 初始化堆 */
// 初始化小顶堆
PriorityQueue<int, int> minHeap = new PriorityQueue<int, int>();
// 初始化大顶堆(使用 lambda 表达式修改 Comparator 即可)
PriorityQueue<int, int> maxHeap = new PriorityQueue<int, int>(Comparer<int>.Create((x, y) => y - x));

/* 元素入堆 */
maxHeap.Enqueue(1, 1);
maxHeap.Enqueue(3, 3);
maxHeap.Enqueue(2, 2);
maxHeap.Enqueue(5, 5);
maxHeap.Enqueue(4, 4);

/* 获取堆顶元素 */
int peek = maxHeap.Peek();//5

/* 堆顶元素出堆 */
// 出堆元素会形成一个从大到小的序列
peek = maxHeap.Dequeue();  // 5
peek = maxHeap.Dequeue();  // 4
peek = maxHeap.Dequeue();  // 3
peek = maxHeap.Dequeue();  // 2
peek = maxHeap.Dequeue();  // 1

/* 获取堆大小 */
int size = maxHeap.Count;

/* 判断堆是否为空 */
bool isEmpty = maxHeap.Count == 0;

/* 输入列表并建堆 */
minHeap = new PriorityQueue<int, int>(new List<(int, int)> { (1, 1), (3, 3), (2, 2), (5, 5), (4, 4), });
heap.go
// Go 语言中可以通过实现 heap.Interface 来构建整数大顶堆
// 实现 heap.Interface 需要同时实现 sort.Interface
type intHeap []any

// Push heap.Interface 的方法,实现推入元素到堆
func (h *intHeap) Push(x any) {
    // Push 和 Pop 使用 pointer receiver 作为参数
    // 因为它们不仅会对切片的内容进行调整,还会修改切片的长度。
    *h = append(*h, x.(int))
}

// Pop heap.Interface 的方法,实现弹出堆顶元素
func (h *intHeap) Pop() any {
    // 待出堆元素存放在最后
    last := (*h)[len(*h)-1]
    *h = (*h)[:len(*h)-1]
    return last
}

// Len sort.Interface 的方法
func (h *intHeap) Len() int {
    return len(*h)
}

// Less sort.Interface 的方法
func (h *intHeap) Less(i, j int) bool {
    // 如果实现小顶堆,则需要调整为小于号
    return (*h)[i].(int) > (*h)[j].(int)
}

// Swap sort.Interface 的方法
func (h *intHeap) Swap(i, j int) {
    (*h)[i], (*h)[j] = (*h)[j], (*h)[i]
}

// Top 获取堆顶元素
func (h *intHeap) Top() any {
    return (*h)[0]
}

/* Driver Code */
func TestHeap(t *testing.T) {
    /* 初始化堆 */
    // 初始化大顶堆
    maxHeap := &intHeap{}
    heap.Init(maxHeap)
    /* 元素入堆 */
    // 调用 heap.Interface 的方法,来添加元素
    heap.Push(maxHeap, 1)
    heap.Push(maxHeap, 3)
    heap.Push(maxHeap, 2)
    heap.Push(maxHeap, 4)
    heap.Push(maxHeap, 5)

    /* 获取堆顶元素 */
    top := maxHeap.Top()
    fmt.Printf("堆顶元素为 %d\n", top)

    /* 堆顶元素出堆 */
    // 调用 heap.Interface 的方法,来移除元素
    heap.Pop(maxHeap) // 5
    heap.Pop(maxHeap) // 4
    heap.Pop(maxHeap) // 3
    heap.Pop(maxHeap) // 2
    heap.Pop(maxHeap) // 1

    /* 获取堆大小 */
    size := len(*maxHeap)
    fmt.Printf("堆元素数量为 %d\n", size)

    /* 判断堆是否为空 */
    isEmpty := len(*maxHeap) == 0
    fmt.Printf("堆是否为空 %t\n", isEmpty)
}
heap.swift
// Swift 未提供内置 Heap 类
heap.js
// JavaScript 未提供内置 Heap 类
heap.ts
// TypeScript 未提供内置 Heap 类
heap.dart
// Dart 未提供内置 Heap 类
heap.rs
use std::collections::BinaryHeap;
use std::cmp::Reverse;

/* 初始化堆 */
// 初始化小顶堆
let mut min_heap = BinaryHeap::<Reverse<i32>>::new();
// 初始化大顶堆
let mut max_heap = BinaryHeap::new();

/* 元素入堆 */
max_heap.push(1);
max_heap.push(3);
max_heap.push(2);
max_heap.push(5);
max_heap.push(4);

/* 获取堆顶元素 */
let peek = max_heap.peek().unwrap();  // 5

/* 堆顶元素出堆 */
// 出堆元素会形成一个从大到小的序列
let peek = max_heap.pop().unwrap();   // 5
let peek = max_heap.pop().unwrap();   // 4
let peek = max_heap.pop().unwrap();   // 3
let peek = max_heap.pop().unwrap();   // 2
let peek = max_heap.pop().unwrap();   // 1

/* 获取堆大小 */
let size = max_heap.len();

/* 判断堆是否为空 */
let is_empty = max_heap.is_empty();

/* 输入列表并建堆 */
let min_heap = BinaryHeap::from(vec![Reverse(1), Reverse(3), Reverse(2), Reverse(5), Reverse(4)]);
heap.c
// C 未提供内置 Heap 类
heap.zig

堆的实现

下文实现的是大顶堆。若要将其转换为小顶堆,只需将所有大小逻辑判断取逆(例如,将 \(\geq\) 替换为 \(\leq\) )。感兴趣的读者可以自行实现。

堆的存储与表示

我们在二叉树章节中学习到,完全二叉树非常适合用数组来表示。由于堆正是一种完全二叉树,我们将采用数组来存储堆

当使用数组表示二叉树时,元素代表节点值,索引代表节点在二叉树中的位置。节点指针通过索引映射公式来实现

如下图所示,给定索引 \(i\) ,其左子节点索引为 \(2i + 1\) ,右子节点索引为 \(2i + 2\) ,父节点索引为 \((i - 1) / 2\)(向下取整)。当索引越界时,表示空节点或节点不存在。

堆的表示与存储

我们可以将索引映射公式封装成函数,方便后续使用。

my_heap.py
[class]{MaxHeap}-[func]{left}

[class]{MaxHeap}-[func]{right}

[class]{MaxHeap}-[func]{parent}
my_heap.cpp
[class]{MaxHeap}-[func]{left}

[class]{MaxHeap}-[func]{right}

[class]{MaxHeap}-[func]{parent}
my_heap.java
[class]{MaxHeap}-[func]{left}

[class]{MaxHeap}-[func]{right}

[class]{MaxHeap}-[func]{parent}
my_heap.cs
[class]{MaxHeap}-[func]{left}

[class]{MaxHeap}-[func]{right}

[class]{MaxHeap}-[func]{parent}
my_heap.go
[class]{maxHeap}-[func]{left}

[class]{maxHeap}-[func]{right}

[class]{maxHeap}-[func]{parent}
my_heap.swift
[class]{MaxHeap}-[func]{left}

[class]{MaxHeap}-[func]{right}

[class]{MaxHeap}-[func]{parent}
my_heap.js
[class]{MaxHeap}-[func]{#left}

[class]{MaxHeap}-[func]{#right}

[class]{MaxHeap}-[func]{#parent}
my_heap.ts
[class]{MaxHeap}-[func]{left}

[class]{MaxHeap}-[func]{right}

[class]{MaxHeap}-[func]{parent}
my_heap.dart
[class]{MaxHeap}-[func]{_left}

[class]{MaxHeap}-[func]{_right}

[class]{MaxHeap}-[func]{_parent}
my_heap.rs
[class]{MaxHeap}-[func]{left}

[class]{MaxHeap}-[func]{right}

[class]{MaxHeap}-[func]{parent}
my_heap.c
[class]{maxHeap}-[func]{left}

[class]{maxHeap}-[func]{right}

[class]{maxHeap}-[func]{parent}
my_heap.zig
[class]{MaxHeap}-[func]{left}

[class]{MaxHeap}-[func]{right}

[class]{MaxHeap}-[func]{parent}

访问堆顶元素

堆顶元素即为二叉树的根节点,也就是列表的首个元素。

my_heap.py
[class]{MaxHeap}-[func]{peek}
my_heap.cpp
[class]{MaxHeap}-[func]{peek}
my_heap.java
[class]{MaxHeap}-[func]{peek}
my_heap.cs
[class]{MaxHeap}-[func]{peek}
my_heap.go
[class]{maxHeap}-[func]{peek}
my_heap.swift
[class]{MaxHeap}-[func]{peek}
my_heap.js
[class]{MaxHeap}-[func]{peek}
my_heap.ts
[class]{MaxHeap}-[func]{peek}
my_heap.dart
[class]{MaxHeap}-[func]{peek}
my_heap.rs
[class]{MaxHeap}-[func]{peek}
my_heap.c
[class]{maxHeap}-[func]{peek}
my_heap.zig
[class]{MaxHeap}-[func]{peek}

元素入堆

给定元素 val ,我们首先将其添加到堆底。添加之后,由于 val 可能大于堆中其他元素,堆的成立条件可能已被破坏。因此,需要修复从插入节点到根节点的路径上的各个节点,这个操作被称为「堆化 heapify」。

考虑从入堆节点开始,从底至顶执行堆化。如下图所示,我们比较插入节点与其父节点的值,如果插入节点更大,则将它们交换。然后继续执行此操作,从底至顶修复堆中的各个节点,直至越过根节点或遇到无须交换的节点时结束。

元素入堆步骤

heap_push_step2

heap_push_step3

heap_push_step4

heap_push_step5

heap_push_step6

heap_push_step7

heap_push_step8

heap_push_step9

设节点总数为 \(n\) ,则树的高度为 \(O(\log n)\) 。由此可知,堆化操作的循环轮数最多为 \(O(\log n)\)元素入堆操作的时间复杂度为 \(O(\log n)\)

my_heap.py
[class]{MaxHeap}-[func]{push}

[class]{MaxHeap}-[func]{sift_up}
my_heap.cpp
[class]{MaxHeap}-[func]{push}

[class]{MaxHeap}-[func]{siftUp}
my_heap.java
[class]{MaxHeap}-[func]{push}

[class]{MaxHeap}-[func]{siftUp}
my_heap.cs
[class]{MaxHeap}-[func]{push}

[class]{MaxHeap}-[func]{siftUp}
my_heap.go
[class]{maxHeap}-[func]{push}

[class]{maxHeap}-[func]{siftUp}
my_heap.swift
[class]{MaxHeap}-[func]{push}

[class]{MaxHeap}-[func]{siftUp}
my_heap.js
[class]{MaxHeap}-[func]{push}

[class]{MaxHeap}-[func]{#siftUp}
my_heap.ts
[class]{MaxHeap}-[func]{push}

[class]{MaxHeap}-[func]{siftUp}
my_heap.dart
[class]{MaxHeap}-[func]{push}

[class]{MaxHeap}-[func]{siftUp}
my_heap.rs
[class]{MaxHeap}-[func]{push}

[class]{MaxHeap}-[func]{sift_up}
my_heap.c
[class]{maxHeap}-[func]{push}

[class]{maxHeap}-[func]{siftUp}
my_heap.zig
[class]{MaxHeap}-[func]{push}

[class]{MaxHeap}-[func]{siftUp}

堆顶元素出堆

堆顶元素是二叉树的根节点,即列表首元素。如果我们直接从列表中删除首元素,那么二叉树中所有节点的索引都会发生变化,这将使得后续使用堆化修复变得困难。为了尽量减少元素索引的变动,我们采用以下操作步骤。

  1. 交换堆顶元素与堆底元素(即交换根节点与最右叶节点)。
  2. 交换完成后,将堆底从列表中删除(注意,由于已经交换,实际上删除的是原来的堆顶元素)。
  3. 从根节点开始,从顶至底执行堆化

如下图所示,“从顶至底堆化”的操作方向与“从底至顶堆化”相反,我们将根节点的值与其两个子节点的值进行比较,将最大的子节点与根节点交换。然后循环执行此操作,直到越过叶节点或遇到无须交换的节点时结束。

堆顶元素出堆步骤

heap_pop_step2

heap_pop_step3

heap_pop_step4

heap_pop_step5

heap_pop_step6

heap_pop_step7

heap_pop_step8

heap_pop_step9

heap_pop_step10

与元素入堆操作相似,堆顶元素出堆操作的时间复杂度也为 \(O(\log n)\)

my_heap.py
[class]{MaxHeap}-[func]{pop}

[class]{MaxHeap}-[func]{sift_down}
my_heap.cpp
[class]{MaxHeap}-[func]{pop}

[class]{MaxHeap}-[func]{siftDown}
my_heap.java
[class]{MaxHeap}-[func]{pop}

[class]{MaxHeap}-[func]{siftDown}
my_heap.cs
[class]{MaxHeap}-[func]{pop}

[class]{MaxHeap}-[func]{siftDown}
my_heap.go
[class]{maxHeap}-[func]{pop}

[class]{maxHeap}-[func]{siftDown}
my_heap.swift
[class]{MaxHeap}-[func]{pop}

[class]{MaxHeap}-[func]{siftDown}
my_heap.js
[class]{MaxHeap}-[func]{pop}

[class]{MaxHeap}-[func]{#siftDown}
my_heap.ts
[class]{MaxHeap}-[func]{pop}

[class]{MaxHeap}-[func]{siftDown}
my_heap.dart
[class]{MaxHeap}-[func]{pop}

[class]{MaxHeap}-[func]{siftDown}
my_heap.rs
[class]{MaxHeap}-[func]{pop}

[class]{MaxHeap}-[func]{sift_down}
my_heap.c
[class]{maxHeap}-[func]{pop}

[class]{maxHeap}-[func]{siftDown}
my_heap.zig
[class]{MaxHeap}-[func]{pop}

[class]{MaxHeap}-[func]{siftDown}

堆常见应用

  • 优先队列:堆通常作为实现优先队列的首选数据结构,其入队和出队操作的时间复杂度均为 \(O(\log n)\) ,而建队操作为 \(O(n)\) ,这些操作都非常高效。
  • 堆排序:给定一组数据,我们可以用它们建立一个堆,然后不断地执行元素出堆操作,从而得到有序数据。然而,我们通常会使用一种更优雅的方式实现堆排序,详见后续的堆排序章节。
  • 获取最大的 \(k\) 个元素:这是一个经典的算法问题,同时也是一种典型应用,例如选择热度前 10 的新闻作为微博热搜,选取销量前 10 的商品等。