跳转至

0-1 背包问题

背包问题是一个非常好的动态规划入门题目,是动态规划中最常见的问题形式。其具有很多变种,例如 0-1 背包问题、完全背包问题、多重背包问题等。

在本节中,我们先来求解最常见的 0-1 背包问题。

Question

给定 \(n\) 个物品,第 \(i\) 个物品的重量为 \(wgt[i-1]\)、价值为 \(val[i-1]\) ,和一个容量为 \(cap\) 的背包。每个物品只能选择一次,问在不超过背包容量下能放入物品的最大价值。

观察下图,由于物品编号 \(i\)\(1\) 开始计数,数组索引从 \(0\) 开始计数,因此物品 \(i\) 对应重量 \(wgt[i-1]\) 和价值 \(val[i-1]\)

0-1 背包的示例数据

我们可以将 0-1 背包问题看作是一个由 \(n\) 轮决策组成的过程,每个物体都有不放入和放入两种决策,因此该问题是满足决策树模型的。

该问题的目标是求解“在限定背包容量下的最大价值”,因此较大概率是个动态规划问题。

第一步:思考每轮的决策,定义状态,从而得到 \(dp\)

对于每个物品来说,不放入背包,背包容量不变;放入背包,背包容量减小。由此可得状态定义:当前物品编号 \(i\) 和剩余背包容量 \(c\) ,记为 \([i, c]\)

状态 \([i, c]\) 对应的子问题为:\(i\) 个物品在剩余容量为 \(c\) 的背包中的最大价值,记为 \(dp[i, c]\)

待求解的是 \(dp[n, cap]\) ,因此需要一个尺寸为 \((n+1) \times (cap+1)\) 的二维 \(dp\) 表。

第二步:找出最优子结构,进而推导出状态转移方程

当我们做出物品 \(i\) 的决策后,剩余的是前 \(i-1\) 个物品的决策,可分为以下两种情况。

  • 不放入物品 \(i\) :背包容量不变,状态变化为 \([i-1, c]\)
  • 放入物品 \(i\) :背包容量减小 \(wgt[i-1]\) ,价值增加 \(val[i-1]\) ,状态变化为 \([i-1, c-wgt[i-1]]\)

上述分析向我们揭示了本题的最优子结构:最大价值 \(dp[i, c]\) 等于不放入物品 \(i\) 和放入物品 \(i\) 两种方案中的价值更大的那一个。由此可推出状态转移方程:

\[ dp[i, c] = \max(dp[i-1, c], dp[i-1, c - wgt[i-1]] + val[i-1]) \]

需要注意的是,若当前物品重量 \(wgt[i - 1]\) 超出剩余背包容量 \(c\) ,则只能选择不放入背包。

第三步:确定边界条件和状态转移顺序

当无物品或无剩余背包容量时最大价值为 \(0\) ,即首列 \(dp[i, 0]\) 和首行 \(dp[0, c]\) 都等于 \(0\)

当前状态 \([i, c]\) 从上方的状态 \([i-1, c]\) 和左上方的状态 \([i-1, c-wgt[i-1]]\) 转移而来,因此通过两层循环正序遍历整个 \(dp\) 表即可。

根据以上分析,我们接下来按顺序实现暴力搜索、记忆化搜索、动态规划解法。

方法一:暴力搜索

搜索代码包含以下要素。

  • 递归参数:状态 \([i, c]\)
  • 返回值:子问题的解 \(dp[i, c]\)
  • 终止条件:当物品编号越界 \(i = 0\) 或背包剩余容量为 \(0\) 时,终止递归并返回价值 \(0\)
  • 剪枝:若当前物品重量超出背包剩余容量,则只能不放入背包。
knapsack.py
[class]{}-[func]{knapsack_dfs}
knapsack.cpp
[class]{}-[func]{knapsackDFS}
knapsack.java
[class]{knapsack}-[func]{knapsackDFS}
knapsack.cs
[class]{knapsack}-[func]{knapsackDFS}
knapsack.go
[class]{}-[func]{knapsackDFS}
knapsack.swift
[class]{}-[func]{knapsackDFS}
knapsack.js
[class]{}-[func]{knapsackDFS}
knapsack.ts
[class]{}-[func]{knapsackDFS}
knapsack.dart
[class]{}-[func]{knapsackDFS}
knapsack.rs
[class]{}-[func]{knapsack_dfs}
knapsack.c
[class]{}-[func]{knapsackDFS}
knapsack.zig
[class]{}-[func]{knapsackDFS}

如下图所示,由于每个物品都会产生不选和选两条搜索分支,因此时间复杂度为 \(O(2^n)\)

观察递归树,容易发现其中存在重叠子问题,例如 \(dp[1, 10]\) 等。而当物品较多、背包容量较大,尤其是相同重量的物品较多时,重叠子问题的数量将会大幅增多。

0-1 背包的暴力搜索递归树

方法二:记忆化搜索

为了保证重叠子问题只被计算一次,我们借助记忆列表 mem 来记录子问题的解,其中 mem[i][c] 对应 \(dp[i, c]\)

引入记忆化之后,时间复杂度取决于子问题数量,也就是 \(O(n \times cap)\)

knapsack.py
[class]{}-[func]{knapsack_dfs_mem}
knapsack.cpp
[class]{}-[func]{knapsackDFSMem}
knapsack.java
[class]{knapsack}-[func]{knapsackDFSMem}
knapsack.cs
[class]{knapsack}-[func]{knapsackDFSMem}
knapsack.go
[class]{}-[func]{knapsackDFSMem}
knapsack.swift
[class]{}-[func]{knapsackDFSMem}
knapsack.js
[class]{}-[func]{knapsackDFSMem}
knapsack.ts
[class]{}-[func]{knapsackDFSMem}
knapsack.dart
[class]{}-[func]{knapsackDFSMem}
knapsack.rs
[class]{}-[func]{knapsack_dfs_mem}
knapsack.c
[class]{}-[func]{knapsackDFSMem}
knapsack.zig
[class]{}-[func]{knapsackDFSMem}

下图展示了在记忆化递归中被剪掉的搜索分支。

0-1 背包的记忆化搜索递归树

方法三:动态规划

动态规划实质上就是在状态转移中填充 \(dp\) 表的过程,代码如下所示。

knapsack.py
[class]{}-[func]{knapsack_dp}
knapsack.cpp
[class]{}-[func]{knapsackDP}
knapsack.java
[class]{knapsack}-[func]{knapsackDP}
knapsack.cs
[class]{knapsack}-[func]{knapsackDP}
knapsack.go
[class]{}-[func]{knapsackDP}
knapsack.swift
[class]{}-[func]{knapsackDP}
knapsack.js
[class]{}-[func]{knapsackDP}
knapsack.ts
[class]{}-[func]{knapsackDP}
knapsack.dart
[class]{}-[func]{knapsackDP}
knapsack.rs
[class]{}-[func]{knapsack_dp}
knapsack.c
[class]{}-[func]{knapsackDP}
knapsack.zig
[class]{}-[func]{knapsackDP}

如下图所示,时间复杂度和空间复杂度都由数组 dp 大小决定,即 \(O(n \times cap)\)

0-1 背包的动态规划过程

knapsack_dp_step2

knapsack_dp_step3

knapsack_dp_step4

knapsack_dp_step5

knapsack_dp_step6

knapsack_dp_step7

knapsack_dp_step8

knapsack_dp_step9

knapsack_dp_step10

knapsack_dp_step11

knapsack_dp_step12

knapsack_dp_step13

knapsack_dp_step14

空间优化

由于每个状态都只与其上一行的状态有关,因此我们可以使用两个数组滚动前进,将空间复杂度从 \(O(n^2)\) 将低至 \(O(n)\)

进一步思考,我们是否可以仅用一个数组实现空间优化呢?观察可知,每个状态都是由正上方或左上方的格子转移过来的。假设只有一个数组,当开始遍历第 \(i\) 行时,该数组存储的仍然是第 \(i-1\) 行的状态。

  • 如果采取正序遍历,那么遍历到 \(dp[i, j]\) 时,左上方 \(dp[i-1, 1]\) ~ \(dp[i-1, j-1]\) 值可能已经被覆盖,此时就无法得到正确的状态转移结果。
  • 如果采取倒序遍历,则不会发生覆盖问题,状态转移可以正确进行。

下图展示了在单个数组下从第 \(i = 1\) 行转换至第 \(i = 2\) 行的过程。请思考正序遍历和倒序遍历的区别。

0-1 背包的空间优化后的动态规划过程

knapsack_dp_comp_step2

knapsack_dp_comp_step3

knapsack_dp_comp_step4

knapsack_dp_comp_step5

knapsack_dp_comp_step6

在代码实现中,我们仅需将数组 dp 的第一维 \(i\) 直接删除,并且把内循环更改为倒序遍历即可。

knapsack.py
[class]{}-[func]{knapsack_dp_comp}
knapsack.cpp
[class]{}-[func]{knapsackDPComp}
knapsack.java
[class]{knapsack}-[func]{knapsackDPComp}
knapsack.cs
[class]{knapsack}-[func]{knapsackDPComp}
knapsack.go
[class]{}-[func]{knapsackDPComp}
knapsack.swift
[class]{}-[func]{knapsackDPComp}
knapsack.js
[class]{}-[func]{knapsackDPComp}
knapsack.ts
[class]{}-[func]{knapsackDPComp}
knapsack.dart
[class]{}-[func]{knapsackDPComp}
knapsack.rs
[class]{}-[func]{knapsack_dp_comp}
knapsack.c
[class]{}-[func]{knapsackDPComp}
knapsack.zig
[class]{}-[func]{knapsackDPComp}