编辑距离问题¶
编辑距离,也被称为 Levenshtein 距离,指两个字符串之间互相转换的最小修改次数,通常用于在信息检索和自然语言处理中度量两个序列的相似度。
Question
输入两个字符串 \(s\) 和 \(t\) ,返回将 \(s\) 转换为 \(t\) 所需的最少编辑步数。
你可以在一个字符串中进行三种编辑操作:插入一个字符、删除一个字符、替换字符为任意一个字符。
如下图所示,将 kitten
转换为 sitting
需要编辑 3 步,包括 2 次替换操作与 1 次添加操作;将 hello
转换为 algo
需要 3 步,包括 2 次替换操作和 1 次删除操作。
编辑距离问题可以很自然地用决策树模型来解释。字符串对应树节点,一轮决策(一次编辑操作)对应树的一条边。
如下图所示,在不限制操作的情况下,每个节点都可以派生出许多条边,每条边对应一种操作,这意味着从 hello
转换到 algo
有许多种可能的路径。
从决策树的角度看,本题的目标是求解节点 hello
和节点 algo
之间的最短路径。
动态规划思路¶
第一步:思考每轮的决策,定义状态,从而得到 \(dp\) 表
每一轮的决策是对字符串 \(s\) 进行一次编辑操作。
我们希望在编辑操作的过程中,问题的规模逐渐缩小,这样才能构建子问题。设字符串 \(s\) 和 \(t\) 的长度分别为 \(n\) 和 \(m\) ,我们先考虑两字符串尾部的字符 \(s[n-1]\) 和 \(t[m-1]\) 。
- 若 \(s[n-1]\) 和 \(t[m-1]\) 相同,我们可以跳过它们,直接考虑 \(s[n-2]\) 和 \(t[m-2]\) 。
- 若 \(s[n-1]\) 和 \(t[m-1]\) 不同,我们需要对 \(s\) 进行一次编辑(插入、删除、替换),使得两字符串尾部的字符相同,从而可以跳过它们,考虑规模更小的问题。
也就是说,我们在字符串 \(s\) 中进行的每一轮决策(编辑操作),都会使得 \(s\) 和 \(t\) 中剩余的待匹配字符发生变化。因此,状态为当前在 \(s\) 和 \(t\) 中考虑的第 \(i\) 和 \(j\) 个字符,记为 \([i, j]\) 。
状态 \([i, j]\) 对应的子问题:将 \(s\) 的前 \(i\) 个字符更改为 \(t\) 的前 \(j\) 个字符所需的最少编辑步数。
至此,得到一个尺寸为 \((i+1) \times (j+1)\) 的二维 \(dp\) 表。
第二步:找出最优子结构,进而推导出状态转移方程
考虑子问题 \(dp[i, j]\) ,其对应的两个字符串的尾部字符为 \(s[i-1]\) 和 \(t[j-1]\) ,可根据不同编辑操作分为下图所示的三种情况。
- 在 \(s[i-1]\) 之后添加 \(t[j-1]\) ,则剩余子问题 \(dp[i, j-1]\) 。
- 删除 \(s[i-1]\) ,则剩余子问题 \(dp[i-1, j]\) 。
- 将 \(s[i-1]\) 替换为 \(t[j-1]\) ,则剩余子问题 \(dp[i-1, j-1]\) 。
根据以上分析,可得最优子结构:\(dp[i, j]\) 的最少编辑步数等于 \(dp[i, j-1]\)、\(dp[i-1, j]\)、\(dp[i-1, j-1]\) 三者中的最少编辑步数,再加上本次的编辑步数 \(1\) 。对应的状态转移方程为:
请注意,当 \(s[i-1]\) 和 \(t[j-1]\) 相同时,无须编辑当前字符,这种情况下的状态转移方程为:
第三步:确定边界条件和状态转移顺序
当两字符串都为空时,编辑步数为 \(0\) ,即 \(dp[0, 0] = 0\) 。当 \(s\) 为空但 \(t\) 不为空时,最少编辑步数等于 \(t\) 的长度,即首行 \(dp[0, j] = j\) 。当 \(s\) 不为空但 \(t\) 为空时,等于 \(s\) 的长度,即首列 \(dp[i, 0] = i\) 。
观察状态转移方程,解 \(dp[i, j]\) 依赖左方、上方、左上方的解,因此通过两层循环正序遍历整个 \(dp\) 表即可。
代码实现¶
如下图所示,编辑距离问题的状态转移过程与背包问题非常类似,都可以看作是填写一个二维网格的过程。
空间优化¶
由于 \(dp[i,j]\) 是由上方 \(dp[i-1, j]\)、左方 \(dp[i, j-1]\)、左上方状态 \(dp[i-1, j-1]\) 转移而来,而正序遍历会丢失左上方 \(dp[i-1, j-1]\) ,倒序遍历无法提前构建 \(dp[i, j-1]\) ,因此两种遍历顺序都不可取。
为此,我们可以使用一个变量 leftup
来暂存左上方的解 \(dp[i-1, j-1]\) ,从而只需考虑左方和上方的解。此时的情况与完全背包问题相同,可使用正序遍历。