跳转至

动态规划问题特性

在上节中,我们学习了动态规划是如何通过子问题分解来求解问题的。实际上,子问题分解是一种通用的算法思路,在分治、动态规划、回溯中的侧重点不同。

  • 分治算法递归地将原问题划分为多个相互独立的子问题,直至最小子问题,并在回溯中合并子问题的解,最终得到原问题的解。
  • 动态规划也对问题进行递归分解,但与分治算法的主要区别是,动态规划中的子问题是相互依赖的,在分解过程中会出现许多重叠子问题。
  • 回溯算法在尝试和回退中穷举所有可能的解,并通过剪枝避免不必要的搜索分支。原问题的解由一系列决策步骤构成,我们可以将每个决策步骤之前的子序列看作为一个子问题。

实际上,动态规划常用来求解最优化问题,它们不仅包含重叠子问题,还具有另外两大特性:最优子结构、无后效性。

最优子结构

我们对爬楼梯问题稍作改动,使之更加适合展示最优子结构概念。

爬楼梯最小代价

给定一个楼梯,你每步可以上 \(1\) 阶或者 \(2\) 阶,每一阶楼梯上都贴有一个非负整数,表示你在该台阶所需要付出的代价。给定一个非负整数数组 \(cost\) ,其中 \(cost[i]\) 表示在第 \(i\) 个台阶需要付出的代价,\(cost[0]\) 为地面起始点。请计算最少需要付出多少代价才能到达顶部?

如下图所示,若第 \(1\)\(2\)\(3\) 阶的代价分别为 \(1\)\(10\)\(1\) ,则从地面爬到第 \(3\) 阶的最小代价为 \(2\)

爬到第 3 阶的最小代价

\(dp[i]\) 为爬到第 \(i\) 阶累计付出的代价,由于第 \(i\) 阶只可能从 \(i - 1\) 阶或 \(i - 2\) 阶走来,因此 \(dp[i]\) 只可能等于 \(dp[i - 1] + cost[i]\)\(dp[i - 2] + cost[i]\) 。为了尽可能减少代价,我们应该选择两者中较小的那一个:

\[ dp[i] = \min(dp[i-1], dp[i-2]) + cost[i] \]

这便可以引出最优子结构的含义:原问题的最优解是从子问题的最优解构建得来的

本题显然具有最优子结构:我们从两个子问题最优解 \(dp[i-1]\)\(dp[i-2]\) 中挑选出较优的那一个,并用它构建出原问题 \(dp[i]\) 的最优解。

那么,上节的爬楼梯题目有没有最优子结构呢?它的目标是求解方案数量,看似是一个计数问题,但如果换一种问法:“求解最大方案数量”。我们意外地发现,虽然题目修改前后是等价的,但最优子结构浮现出来了:第 \(n\) 阶最大方案数量等于第 \(n-1\) 阶和第 \(n-2\) 阶最大方案数量之和。所以说,最优子结构的解释方式比较灵活,在不同问题中会有不同的含义。

根据状态转移方程,以及初始状态 \(dp[1] = cost[1]\)\(dp[2] = cost[2]\) ,我们就可以得到动态规划代码。

min_cost_climbing_stairs_dp.py
[class]{}-[func]{min_cost_climbing_stairs_dp}
min_cost_climbing_stairs_dp.cpp
[class]{}-[func]{minCostClimbingStairsDP}
min_cost_climbing_stairs_dp.java
[class]{min_cost_climbing_stairs_dp}-[func]{minCostClimbingStairsDP}
min_cost_climbing_stairs_dp.cs
[class]{min_cost_climbing_stairs_dp}-[func]{minCostClimbingStairsDP}
min_cost_climbing_stairs_dp.go
[class]{}-[func]{minCostClimbingStairsDP}
min_cost_climbing_stairs_dp.swift
[class]{}-[func]{minCostClimbingStairsDP}
min_cost_climbing_stairs_dp.js
[class]{}-[func]{minCostClimbingStairsDP}
min_cost_climbing_stairs_dp.ts
[class]{}-[func]{minCostClimbingStairsDP}
min_cost_climbing_stairs_dp.dart
[class]{}-[func]{minCostClimbingStairsDP}
min_cost_climbing_stairs_dp.rs
[class]{}-[func]{min_cost_climbing_stairs_dp}
min_cost_climbing_stairs_dp.c
[class]{}-[func]{minCostClimbingStairsDP}
min_cost_climbing_stairs_dp.zig
[class]{}-[func]{minCostClimbingStairsDP}

下图展示了以上代码的动态规划过程。

爬楼梯最小代价的动态规划过程

本题也可以进行空间优化,将一维压缩至零维,使得空间复杂度从 \(O(n)\) 降低至 \(O(1)\)

min_cost_climbing_stairs_dp.py
[class]{}-[func]{min_cost_climbing_stairs_dp_comp}
min_cost_climbing_stairs_dp.cpp
[class]{}-[func]{minCostClimbingStairsDPComp}
min_cost_climbing_stairs_dp.java
[class]{min_cost_climbing_stairs_dp}-[func]{minCostClimbingStairsDPComp}
min_cost_climbing_stairs_dp.cs
[class]{min_cost_climbing_stairs_dp}-[func]{minCostClimbingStairsDPComp}
min_cost_climbing_stairs_dp.go
[class]{}-[func]{minCostClimbingStairsDPComp}
min_cost_climbing_stairs_dp.swift
[class]{}-[func]{minCostClimbingStairsDPComp}
min_cost_climbing_stairs_dp.js
[class]{}-[func]{minCostClimbingStairsDPComp}
min_cost_climbing_stairs_dp.ts
[class]{}-[func]{minCostClimbingStairsDPComp}
min_cost_climbing_stairs_dp.dart
[class]{}-[func]{minCostClimbingStairsDPComp}
min_cost_climbing_stairs_dp.rs
[class]{}-[func]{min_cost_climbing_stairs_dp_comp}
min_cost_climbing_stairs_dp.c
[class]{}-[func]{minCostClimbingStairsDPComp}
min_cost_climbing_stairs_dp.zig
[class]{}-[func]{minCostClimbingStairsDPComp}

无后效性

无后效性是动态规划能够有效解决问题的重要特性之一,定义为:给定一个确定的状态,它的未来发展只与当前状态有关,而与当前状态过去所经历过的所有状态无关

以爬楼梯问题为例,给定状态 \(i\) ,它会发展出状态 \(i+1\) 和状态 \(i+2\) ,分别对应跳 \(1\) 步和跳 \(2\) 步。在做出这两种选择时,我们无须考虑状态 \(i\) 之前的状态,它们对状态 \(i\) 的未来没有影响。

然而,如果我们向爬楼梯问题添加一个约束,情况就不一样了。

带约束爬楼梯

给定一个共有 \(n\) 阶的楼梯,你每步可以上 \(1\) 阶或者 \(2\) 阶,但不能连续两轮跳 \(1\),请问有多少种方案可以爬到楼顶。

例如下图,爬上第 \(3\) 阶仅剩 \(2\) 种可行方案,其中连续三次跳 \(1\) 阶的方案不满足约束条件,因此被舍弃。

带约束爬到第 3 阶的方案数量

在该问题中,如果上一轮是跳 \(1\) 阶上来的,那么下一轮就必须跳 \(2\) 阶。这意味着,下一步选择不能由当前状态(当前楼梯阶数)独立决定,还和前一个状态(上轮楼梯阶数)有关

不难发现,此问题已不满足无后效性,状态转移方程 \(dp[i] = dp[i-1] + dp[i-2]\) 也失效了,因为 \(dp[i-1]\) 代表本轮跳 \(1\) 阶,但其中包含了许多“上一轮跳 \(1\) 阶上来的”方案,而为了满足约束,我们就不能将 \(dp[i-1]\) 直接计入 \(dp[i]\) 中。

为此,我们需要扩展状态定义:状态 \([i, j]\) 表示处在第 \(i\) 阶、并且上一轮跳了 \(j\),其中 \(j \in \{1, 2\}\) 。此状态定义有效地区分了上一轮跳了 \(1\) 阶还是 \(2\) 阶,我们可以据此来判断当前状态是从何而来的。

  • 当上一轮跳了 \(1\) 阶时,上上一轮只能选择跳 \(2\) 阶,即 \(dp[i, 1]\) 只能从 \(dp[i-1, 2]\) 转移过来。
  • 当上一轮跳了 \(2\) 阶时,上上一轮可选择跳 \(1\) 阶或跳 \(2\) 阶,即 \(dp[i, 2]\) 可以从 \(dp[i-2, 1]\)\(dp[i-2, 2]\) 转移过来。

如下图所示,在该定义下,\(dp[i, j]\) 表示状态 \([i, j]\) 对应的方案数。此时状态转移方程为:

\[ \begin{cases} dp[i, 1] = dp[i-1, 2] \\ dp[i, 2] = dp[i-2, 1] + dp[i-2, 2] \end{cases} \]

考虑约束下的递推关系

最终,返回 \(dp[n, 1] + dp[n, 2]\) 即可,两者之和代表爬到第 \(n\) 阶的方案总数。

climbing_stairs_constraint_dp.py
[class]{}-[func]{climbing_stairs_constraint_dp}
climbing_stairs_constraint_dp.cpp
[class]{}-[func]{climbingStairsConstraintDP}
climbing_stairs_constraint_dp.java
[class]{climbing_stairs_constraint_dp}-[func]{climbingStairsConstraintDP}
climbing_stairs_constraint_dp.cs
[class]{climbing_stairs_constraint_dp}-[func]{climbingStairsConstraintDP}
climbing_stairs_constraint_dp.go
[class]{}-[func]{climbingStairsConstraintDP}
climbing_stairs_constraint_dp.swift
[class]{}-[func]{climbingStairsConstraintDP}
climbing_stairs_constraint_dp.js
[class]{}-[func]{climbingStairsConstraintDP}
climbing_stairs_constraint_dp.ts
[class]{}-[func]{climbingStairsConstraintDP}
climbing_stairs_constraint_dp.dart
[class]{}-[func]{climbingStairsConstraintDP}
climbing_stairs_constraint_dp.rs
[class]{}-[func]{climbing_stairs_constraint_dp}
climbing_stairs_constraint_dp.c
[class]{}-[func]{climbingStairsConstraintDP}
climbing_stairs_constraint_dp.zig
[class]{}-[func]{climbingStairsConstraintDP}

在上面的案例中,由于仅需多考虑前面一个状态,我们仍然可以通过扩展状态定义,使得问题重新满足无后效性。然而,某些问题具有非常严重的“有后效性”。

爬楼梯与障碍生成

给定一个共有 \(n\) 阶的楼梯,你每步可以上 \(1\) 阶或者 \(2\) 阶。规定当爬到第 \(i\) 阶时,系统自动会给第 \(2i\) 阶上放上障碍物,之后所有轮都不允许跳到第 \(2i\) 阶上。例如,前两轮分别跳到了第 \(2\)\(3\) 阶上,则之后就不能跳到第 \(4\)\(6\) 阶上。请问有多少种方案可以爬到楼顶。

在这个问题中,下次跳跃依赖于过去所有的状态,因为每一次跳跃都会在更高的阶梯上设置障碍,并影响未来的跳跃。对于这类问题,动态规划往往难以解决。

实际上,许多复杂的组合优化问题(例如旅行商问题)都不满足无后效性。对于这类问题,我们通常会选择使用其他方法,例如启发式搜索、遗传算法、强化学习等,从而在有限时间内得到可用的局部最优解。